skip to content

Cambridge Language Sciences

Interdisciplinary Research Centre
 

Biography

Ahmed Izzidien is a postdoctoral Research Associate at the University of Cambridge.

His interests natural language processing and artificial intelligence machine learning for: legal analysis, Hohfeldian mapping of legal documents, and predicting the outcome of courts. 

Reviewer: Humanities and Social Sciences Communications, Springer Nature: nature.com/palcomms/

Publications

Key publications: 

Izzidien, A. (In Press). Using the Interest Theory of Rights and Hohfeldian Taxonomy to Address a Gap in Machine Learning Methodologies. Humanities and Social Sciences Communications.

Izzidien, A., Sargeant, H., & Steffek, F. (2022). What goes on in court? Identifying contract-related topics decided by United Kingdom courts from 1709 to 2021 using machine learning. Cambridge Open Engage. https://doi:10.33774/coe-2022-p7rjg-v2 

Izzidien, A., Fitz, S., Romero, P. et al. (2022) Developing a sentence level fairness metric using word embeddings. Int J Digit Humanities. https://doi.org/10.1007/s42803-022-00049-4

Izzidien, A. (2022). Word vector embeddings hold social ontological relations capable of reflecting meaningful fairness assessments. AI & SOCIETY, 37(1), 299–318. https://doi.org/10.1007/s00146-021-01167-3

Izzidien, A. (2021, November 15). The Limits of Annotation in Machine Learning a Documents Hohfeldian Legal Entities [Poster session]. Cambridge Language Sciences Symposium, Cambridge, UK. https://doi.org/10.33774/coe-2021-dqwvg

Izzidien, A., & Stillwell, D. (2021). The Golden Rule as a Heuristic to Measure the Fairness of Texts Using Machine Learning. ArXiv:2111.00107 [Cs]. http://arxiv.org/abs/2111.00107

Izzidien, A., & Chennu, S. (2018). A Neuroscience Study on the Implicit Subconscious Perceptions of Fairness and Islamic Law in Muslims Using the EEG N400 Event Related Potential. Journal of Cognition and Neuroethics, 2(5)

Postdoctoral Research Associate

Contact Details

Affiliations

Classifications: